
MASTER THESIS

Federico Forti

Efficient GPU Path Tracing in Solid
Volumetric Media

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Oskar Elek, Ph.D.
Study programme: Computer Science

Study branch: Computer Graphics and Game Development

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Efficient GPU Path Tracing in Solid Volumetric Media

Author: Federico Forti

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Oskar Elek, Ph.D., Department of Software and Computer
Science Education

Abstract: Realistic Image synthesis, usually, requires long computations and the
simulation of the light interacting with a virtual scene. One of the most computa-
tionally intensive simulation in this area is the visualization of solid participating
media. This media can describe many different types of object with the same
physical parameters (e.g. marble, air, fire, skin, wax ...). Simulating the light
interacting with it requires the computation of many independent photons in-
teractions inside the medium. However, those interactions can be computed in
parallel, using the power of modern Graphic Processor Unit, or GPU, computing.
This work present an overview over different methodologies, that can affect the
performance of this type of simulations on the GPU. Different existing ideas are
analyzed, compared and modified with the scope of speeding up the computation
respect to the classic CPU implementation.

Keywords: GPU Volumetric Path Tracing, CUDA

ii

I would like to thank Oskar Elek for supervising my thesis and all the people
that have released volumetric data which makes this thesis possible. I would also
like to thank all the people that have supported me during this time and the
professors who showed me how to approach a research project.

iii

Contents

Introduction 3

1 Problem Statement 5
1.1 Radiative Transport Problem . 5
1.2 Participating Media . 5
1.3 The Volume Rendering Equation (VRE) 6
1.4 Porting to GPU . 7
1.5 Limitations . 8

2 Related Work 9
2.1 Solving the Volumetric Rendering Equation 9

2.1.1 Path Tracing (PT) . 9
2.1.2 Bidirectional Path Tracing (BPT) 10
2.1.3 Metropolis Light Transport (MLT) 10

2.2 Efficient Implementations of Path Tracing on GPU 11

3 Background 13
3.1 Volumetric Path Tracing . 13
3.2 GPU Architecture . 18

4 Optimization Methodology 24
4.1 Host Control or Device Control 24

4.1.1 Single Kernel versus Multi Kernel 24
4.1.2 Image Tiling . 27
4.1.3 Summary . 28

4.2 Maximizing Utilization and Hiding Multiprocessor Latency 28
4.2.1 Persistent Thread . 29
4.2.2 Occupancy . 31
4.2.3 Summary . 32

4.3 Data Locality and Code Divergence 32
4.3.1 Compaction . 33
4.3.2 Reordering . 36
4.3.3 Summary . 38

5 Implementation Details 41
5.1 Generic Programming . 41
5.2 Scene Assembler . 41
5.3 Interactive Renderer and Transfer Delegation 42
5.4 Zero-Copy Volume . 44

6 Discussion 46
6.1 Results . 46
6.2 Which is the Best? . 48

Conclusion 49

1

Bibliography 50

List of Figures 52

List of Tables 54

List of Abbreviations 56

Attachments 57

2

Introduction

Motivation
In the last decade, graphics processor units have emerged as a cheap and power-
ful data parallel computational platforms. The architectural innovations, in such
processors, have transformed the GPU from fixed-function hardware blocks to
programmable units for general purpose computations (GPGPU). The gap be-
tween floating-point capability of GPU versus CPU is increasing on a year base
and other hardware trends encourages to parallelize the existing serial algorithms
(Nvidia [2017], McCool et al. [2012]). The evolution of new programming lan-
guages, like CUDA- Compute Unified Device Architecture- and OpenCL, gives to
the programmer more flexibility in the usage of the GPU processors for general
purpose computing. This processing power can be used today to address many
of the computational problems, not solvable in adequate time with the previ-
ously available resources. The task we are going to focus on is realistic image
synthesis of participating media. Most of the light effects, visible in nature, can
be described by this type of media. Indeed, those are usually used to describe
the property of a generic material. Realistic rendering of those materials requires
physical simulations of the light interacting with the media. Those interactions
can be thousands or millions based on the type of participating media we are
going to simulate. For this reason, simulation of the light can take a long time.
Efficiently, using GPU to compute in parallel, those light interactions can improve
the time performance to get the final render.

Possible Applications
Realistic image synthesis of solid object interests a wide range of areas. In archi-
tecture and product visualization can be used to present a building or a product.
In virtual prototyping can be used to predict the appearance of an object before
creating it and modifying it in according to that. Realistic Real time rendering
is used inside many of the most famous games. Another possible application
comes from volume visualization, where realistic rendering plays a central role in
3D shape perception. Most of the available implementation, in this sense, focuses
more on performance, rather than perfect light transport simulation. The original
idea for this project comes from the 3D printing field. In a recent paper Elek et al.
[2017] have used volumetric rendering for accurate prediction of texture colors in
3D printing. This prediction stage is the biggest performance bottleneck of all
the pipeline. The reason is that print materials have usually high optical density
and simulating the appearance of those materials requires computing thousands
of scattering interactions. This work aims to give a comprehensive view on how to
optimize a volumetric path tracing for the GPU architecture, taking in consider-
ation the advantages and disadvantages of different design choices. The solutions
found can be used inside a completely GPU based renderer or as a stage of longer
pipeline for rendering.

3

Thesis Structure
The thesis has six chapters:

• the first chapter describes the problem that the thesis aims to solve.

• The second chapter shows the work that has already been done on solving
this problem.

• The third chapter describe the theoretical background necessary for the
methods that the thesis implements.

• The fourth chapter shows the method implemented and the different be-
havior of each method.

• The fifth chapter describes some implementation details on the solution
adopted and the software created.

• Finally, the sixth chapter shows some results obtained with the GPU meth-
ods implemented and a comparison with a standard CPU algorithm.

4

1. Problem Statement
The chapter describes the problem that the thesis aims to solve and describe
more in detail the different characteristics of Participating Media.

1.1 Radiative Transport Problem
The problem that the thesis aims to solve is a radiative transport problem and the
radiometric quantity, that we are searching for, is the radiance L. This quantity
describes how much light arrives from a direction ω on an hypothetical differential
area perpendicular to that direction dA⊥ Jarosz [2008].

L = d2Φ
dω dA⊥ = d2Φ

dω dA cos θ
(1.1)

Where Φ, expressed in Watt (Joule/sec), is the radiant flux, i.e time rate of flow
of radiant energy. When this light energy interact with a participating medium,
than it can scatter or be absorbed. In both cases the light energy is attenuated.
This attenuation is usually called extinction (see van de Hulst [1981]).

Extintion = scattering + absorption

In this type of problems a distinction is done between solid objects, which have a
well defined boundary, and other media, like gases or liquids. In this work, we are
concentrating on the first type of media, considering also cases where the object
boundary defines a change on the index of refraction of the medium.

1.2 Participating Media
We can think of a participating media as an agglomerates of small particles. Each
of those particles can be described by the following characteristics identified by
van de Hulst [1981]:

• Csca (scattering cross section): is the area of the particle which is scattering
light;

• Cabs (absorption cross section): is the area of the particle that is absorbing
light;

• F (scattering diagram of the particle): describes the scattering behavior
and it can be used to obtain the more easily manipulable phase function
fp.

Given those characteristics, the final medium is described by the density function
ρ(x) of these particles for any point x inside the medium. When a photon arrives
to a point x, inside a medium which contains some particles, four types of event
can happen:

5

Absorption: light is absorbed by the particles in that point x, proportionally
to their Cabs; the amount of light absorbed is defined as the absorption
coefficient σa(x)[m−1].

σa(x) = Cabs · ρ(x) (1.2)

Out-scattering and In-scattering: light can be out-scattered or in-scattered
in the point x , based on the Cscat of the particles in that point; the amount
of light scattered is defined as the scattering coefficient σs(x)[m−1].

σs(x) = Cscat · ρ(x) (1.3)

Emission: finally the medium can emit more energy in the point x; we will call
the radiance emitted by the medium in a point x and direction ω, Le(x, ω).

There are also some derived quantities important to describe interactions with a
participating media. Those are the extinction coefficient σt, defined as

σt(x) = σa(x) + σs(x) (1.4)

and the albedo of the medium α, defined as

α = σs

σt

. (1.5)

It is important to notice that it is always possible to derive the first two quantities
in equations 1.2 and 1.3 from the last two equations 1.4 and 1.5, and vice versa.
By integrating the extinction coefficient along a line segment l, we get the optical
thickness of our material τ :

τ(l) =
∫

l
σt(x)dx. (1.6)

Now, we have all the elements to completely describe the change of radiance inside
a medium using the radiative transport equation (RTE), which can be defined
with the following equation:

(ω · ∇)L(x, ω) = Le(x, ω) + σs(x)Li(x, ω) − σa(x)L(x, ω) − σs(x)L(x, ω). (1.7)

where Li(x, ω) is the in-scattered radiance at x, through the direction ω, coming
by other scattered radiance. The equation 1.7 includes all the light interactions
that we have previously described, which are in this order: emission, in-scattering,
absorption, out-scattering.

1.3 The Volume Rendering Equation (VRE)
Scenes, containing solid participating media, are usually modeled as a volume V
and a boundary ∂V , where V ∩ ∂V = ∅. As shown by Matthias Raab and Keller,
the transport can be described differently, based on the position considered on the
volume. If the point is on the surface δV , we use the classic Rendering Equation

L(x, ω) = Le,δV(x, ω) +
∫

S2
fs(ω, x, ω′)L(x, ω′)|cosθx|dσ(ω′) : (1.8)

6

where S2 is the set of all directions (in this work we are using only the hemispher-
ical formulation), fs is the bidirectional scattering distribution function, which
describes the scattering behavior at a point x on the surface (in particular is the
fraction of incident differential radiation reflected into the direction ω′). Finally,
cosθx is the cosine of the angle between direction ω′ and the surface normal at
x (the reader interested on more informations about this equation can find its
complete definition in the work of Kajiya [1986]). On the other hand, if the point
is inside the participating media we have to consider the Volumetric Rendering
Equation (VRE). This equation is obtained integrating the radiative transport
equation, that we have described in the previous paragraph, along straight light
rays until the next intersection point xs of the ray with a surface. The equation
is:

L(x, ω) =
∫ s

0
T (x, xt) · Lv(xt, ω)dt + T (x, xs) · L(xs, ω) (1.9)

where

Lv(x, ω) = Le,V(x, ω) + σs(x)
∫

S2
fp(ω, x, ω′)L(x, ω′)dσ(ω′) (1.10)

and T (x, xt) is the transmittance function defined by the Beer-Lambert-Bougeuer
law as

T (x, xt) = e−τ(||x−xs||) (1.11)

with τ the previously described optical thickness of the medium.
A more general equation, which combines both the equations 1.8 and 1.9, is

the path integral formulation. In this formulation the space of integration is the
union of spaces containing paths with specific length, i.e P := ⋃

k∈N Pk, where Pk

is the space of paths x of length k. The reader interested can find its derivation
in the work of Veach [1997].

From a mathematical point of view, the volume rendering equation is a Fred-
holm integral equation of the 2nd kind. Solving this type of equation analytically
is very difficult, even applying simplifications on medium and light transport.
Many numerical estimations methods have been studied in the literature. Those
methods can be divided in two groups: deterministic methods and stochastic
methods. The first ones are based on a discretization of the domain of integra-
tion and the solution of large linear systems. However, this type of system is
usually affected by some limitations and the recent research has focused more on
the second types of methods. In the next chapter, we are going to cover exactly
this latter type of methods, giving an overview on some of the most important
ones.

1.4 Porting to GPU
GPU-based programs have a number of limitations on when and how memory
can be accessed. Computation speed increases at a much faster rate than mem-
ory access speeds, which means that, to improve time performance, special care
should be taken to maximize bandwidth usage. Simulating light transport, inside
participating media, can also be not obvious. For this scope, one of the most used

7

techniques in the industry of computer graphics is the Monte Carlo path tracing.
This is a stochastic method which uses a random process to correctly estimate the
light interactions in the medium. The random nature of this method makes the
utilization of GPU difficult in this context. GPU is best suited to well predefined
tasks with the minimum control decisions made at runtime. Random behavior of
different GPU threads can lead to decreased utilization of the device. If a GPU is
not utilized at its maximum processing power, the overhead of transferring data
and control to it can make the GPU implementation slower than a CPU one.

1.5 Limitations
This work is subject to different restrictions which limits the generality of the
results obtained:

• we will not consider possible changes of refraction index inside the medium
itself;

• our tested objects are rendered in the vacuum, not considering participating
media outside the volume;

• inherited from the scattering theory used, we will consider only independent
scattering, meaning that we will consider only participating medium which
have well-defined separate particles, and single scattering, which means that
the concentration of particles of the medium considered is proportional to
the total light intensity scattered (further explanation inside the work of
van de Hulst [1981]);

• we will not consider wave effects and only consider ray optics;

• we have tested our implementation only on one GPU architecture and we
address only the usage of CUDA enabled GPU.

8

2. Related Work
In this section, we want to briefly overview some of the well established methods
for rendering participating media solving the volumetric rendering equation 1.9
and the modifications proposed to port them on the GPU. After that, we will
focus on one of those techniques and cover all the work that has been done on
optimizing its implementation on GPU.

2.1 Solving the Volumetric Rendering Equation
We have seen in the previous chapter that our problem can be formulates as the
solution of an integral, the volumetric rendering equation in 1.9. There are many
possibility to estimate the value of this integral but all the algorithms, that we
will treat here, are stochastic and unbiased, which means that the expected value
of the stochastic estimator is equal to the value of the integral.

E[⟨I⟩] = I

We are not going to cover in the next paragraphs the photon-mapping approaches,
which are particularly good on rendering some difficult light effects, e.g reflected
caustics. A GPU implementation of this type of algorithms can be found in the
article by Davidovič et al. [2014]. The article describes GPU implementations of
Progressive Photon Mapping, Stochastic Progressive Photon Mapping, Progres-
sive Bidirectional Photon Mapping and Vertex Connection and Merging, which
combine photon mapping approach to bidirectional path tracing, using multiple
importance sampling. Moreover, a comparison between all the algorithm is pre-
sented which shows the advantage of using Path Tracing, for scenes which present
no complex lighting.

2.1.1 Path Tracing (PT)
Path tracing (developed by Kajiya [1986]) is one of the most used algorithms in
physically-based rendering and it is also the one that we decided to use for our
GPU implementation. The reason being that GPU benefits from simple with high
arithmetic intensity code. Path tracing is the most simple of all the presented
algorithms even using participating media, which only requires distance sampling
inside the media to extend the classic surface path tracer. Path tracing can also
be coupled with next event estimation, a technique that allows direct connection
of the paths with the light sources in the scene, by considering direct illumination
from light sources and indirect illumination two separate Monte Carlo processes.
This can really improve the converging time of the method in some scenes, for
example when the light sources are very small. In this work, we decided to
not include the next event estimations technique. In the context of GPU, using
this technique means following different execution paths for threads that need to
compute shadow rays and the others. Moreover, in the context of solid volumetric
media this added contribution will be very small in most of the cases, because the
contribution must be also attenuated by the transmittance function. Different
authors have proposed efficient implementation of path tracing on GPU in the

9

context of surface rendering, we are going to cover those methods in the next
section after discussing other alternatives.

2.1.2 Bidirectional Path Tracing (BPT)
Bidirectional Path Tracing (developed by Veach [1997]) is a more sophisticated
approach combining the advantages of path tracing with the dual method, which
starts from the light source and light tracing, using multiple importance sampling
for the final Monte Carlo estimator. In this technique, each approach is weighted
and summed together and it can yield to unbiased estimations of the integral.
The method can be easily generalized for participating media, but special care
should be taken for the weights, which can be only approximated. Many authors
have ported this algorithm to GPU without considering volumetric media. The
first implementation was introduced by Novák et al. [2010], then van Antwer-
pen [2011] in a successive work improved it. The implementation increment the
SIMD efficiency compared to a naive implementation. During a first phase of
path generation, active threads are compacted together (we will add more details
about this method in the chapter 4). During the connection phase, each GPU
thread is used to evaluate every bidirectional connection. The method requires a
higher memory consumption in comparison to the Path Tracing implementation.
Moreover, in the work it is showed that even if the CPU implementation performs
better than the classic Path Tracer, this is not the same for GPU, where the path
tracer outperforms BPT in most of the scenes. In a successive work Davidovič
et al. [2014] proposed Light Vertex Cache BPT; the key idea of this algorithm
is that only a certain number of randomly chosen vertex are connected in the
connection phase. This allows to store all the vertex in a single global cache of
size given, by the average path length and to simplify the algorithm. The im-
plementation offers a considerable speed up compared to the previous one and
shows better performance than Path Tracing in scenes with complex lighting.

2.1.3 Metropolis Light Transport (MLT)
Metropolis Light Transport (MLT)Veach [1997] is a method which leverages
Metropolis sampling to sample the path space. This allows to generate paths
according to the type of function we are integrating (that, in our case, is the
radiance coming from the rendered scene):

p(x) = f(x)
b

where b is equal to the value that we want to estimate b =
∫

P f(ydσ(y). The value
of the latter can be estimated rendering the scene at low number of samples. One
of the samples is then used as first state with a probability equal to f

p
. The next

states are then generated using the tentative transition function t(x → y), which
proposes a modification of the previous path. The modification is accepted or
rejected based on the acceptance function. The method is highly affected by the
proposal strategy and has also been explored in the participating media context.
The implementation is based on identifying a path by the random number used
to create it. The integral over the path space is then transformed to an integral

10

over the space of those numbers (the primary sample space). New paths in this
method are created by perturbing the sample. However, both the algorithms
have the risks to continue the computation over and over on the same area of
the scene. To avoid that to happen, new random samples have to be generated
after random intervals of time. Also this algorithm was addressed by Dietger van
Antwerpen [2011]. In its implementation, the algorithm runs many MLT samplers
in parallel and mutates the random numbers at the base of the method during
the path generation phase. Moreover, the implementation builds on top of the
BPT implementation previously described and inherits many of the improvements
shown in that case. Also this method requires a high memory consumption
respect to the Path Tracer implementation and the improvement achieved, using
this technique, depends strongly on the type of scene. Furthermore, also in this
case it is shown that, even if the CPU implementation performs better than Path
Tracing, this is not true for what concerns GPU.

2.2 Efficient Implementations of Path Tracing
on GPU

Path tracing is the core at the base of all the algorithms previously described.
Consequently, an efficient implementation of this building block can have a pos-
itive effect also on the method previously described. We are not going to cover
in this section the work done to reach high GPU performances ray casting large
scenes. The reason being that our objective is to focus on a single volume, which
requires only the intersection with a simple bounding box. The reader interested
can look into the work done by Aila and Laine [2009], which describes the use of
Spatial Bounding Volume Hierarchies (SBVH) on GPU. For the same reason we
decided to not use any ray-shooting solutions, as NVIDIA’s OptiX (more infor-
mations in the work of Parker et al. [2010]) or other frameworks, but rather to
construct a new GPU solution from the ground up. In the introduction, we have
talked about the challenges on porting a CPU algorithm to GPU. To build an
efficient version of Path Tracing on GPU, it is essential to address full utilization
of the available processing power. However, Path Tracing is a stochastic method,
where each path traced can follow a different direction. The termination of some
paths, before others, can reduce the full utilization of GPU. Nova’ak et al. Novák
et al. [2010] have addressed this problem by regenerating terminated paths. This
method uses persistent threadsGupta et al. [2012], which access a global pool of
paths when the paths that are computed terminate. The method is improved by
van Antwerpen [2011], who considered also compacting the active paths before
regenerating new paths for the idle threads (see chapter ?? for more explanation
on this). A single kernel version of the described algorithm is given by Wald
[2011], who proposed a tiled compaction rather than a global device compaction
similar to the method we will show. However, the algorithm showed in the article
does not give the expected results due to the hardware limitation in the number of
registers available for a single kernel. Laine et al. [2013] propose a different type
of path tracing which is best suited for scenes with complex materials requiring
a lot of computation and thus leading to thread divergence. The methods use
multiple lightweight kernels calls which allow to utilize all the resources present

11

on the GPU for the specific task. The paths are stored in a large pool of paths,
which are sorted in chunks based on the specialized kernel they have to be used
on. Davidovič et al. [2014] proposed a single kernel version of path tracing with
regeneration, where regeneration is done singularly by each thread. However, in
this implementation the regeneration is causing code divergence, which means
that while the path is regenerating the other threads in the SIMD group (called
warp in CUDA) have to wait before continuing. In this work, a different sin-
gle kernel regeneration is used that prevents this divergence by regenerating the
paths only when all the paths inside the warp have finished. Davidovič et al.
[2014] provide also a performance comparison between the available algorithms
with the result of having best comparable performances in the regeneration path
tracer method with a single kernel and the streaming path tracer with multiple
kernels. Frolov and Galaktionov [2016] proposed a different implementation of
the path regeneration technique with the objective of lower self cost and avoiding
moving ray data on different memory locations. They use tile-based work dis-
tribution and regenerate entire tiles instead of single threads only if the number
of tiles to regenerate is greater than a certain threshold. Moreover, they apply
thread compaction using shared memory for the threads associated to a tile..

12

3. Background
In this chapter, we will look more in depth at the background theory necessary
to discuss this work.

3.1 Volumetric Path Tracing
We have seen in the previous chapter the volumetric rendering equation 1.9.
Volumetric path tracing is a technique that tries to estimate this integral. For
image synthesis we are usually interested on the radiance (in equation 1.1) which
hits a virtual camera pointed toward our scene. In order to do that, it uses the
Monte Carlo Integration framework, which we are briefly presenting in the next
paragraph.

Monte Carlo Methods
Monte Carlo integration is a general tool for estimating integrals by randomly
sampling the domain of integration given a probability distribution function p(x).
More formally, this proposition, which we are not going to demonstrate, defines
the Monte Carlo estimator.
Proposition 1. Given f : Rd → R a function s.t.

I =
∫

Q
|f(x)| dx < ∞

where Q ⊂ Rd is a limited set. Let n random d-dimensional independent vec-
tors X1,, Xn with the same Probability Distribution Function (here and after
PDF), p = pX1 = ...pXn . We define the random variable:

< I >n:= 1
n

n∑
i=1

f(Xi)
p(Xi)

χQ(Xi) (3.1)

which we call estimator of I. then:

E
(

< I >n

)
= I (3.2)

for any n > 0.
The framework works particularly well for complex high-dimensional integrals

and its implementation is very simple, which is perfect for GPU algorithms.
Increasing the number of samples the estimator converges to the exact solution
with a standard deviation which follows σ = O(n− 1

2).

Ray integral estimator
Considering our integral in equation 1.9 the Monte Carlo primary estimator for
the radiance L in the point x in the direction ω is:

< L(x, ω) >1=
T (x, X1) Lv(X1, ω)

p(X1)
(3.3)

13

if we use uniform sampling of the variable X1 respect to distance along the ray
which start at x and ends at xs, representing in this case the domain Q of our
integral, we have that

p(X) = 1
||x − xs||

and the estimator will be

< L(x, ω) >1 = T (x, X1) Lv(X1, ω) ||x − xs|| (3.4)

However, this simple estimator can lead to high variance when the medium is
particularly dense. To improve the estimator, we can use a different PDF which
simplifies the estimator. This technique is called importance sampling and in the
next paragraph we will see how to sample based on the transmittance such that,
rewriting the transmittance in terms of the distance along the ray s′ = ||x − X1||
and considering the transmittance independent from x, we have

p(s′) = σt(s′) T (s′) = σt(s′) e−
∫ s′

0 σt(p)dp (3.5)

where σt(s′) is a normalization term necessary to transform T (s′) in a PDF.

Sampling distances according to the Transmittance
Woodcock tracking, which can be found in algorithm 1, is a technique allowing
to sample a point along a ray so that the distribution follows the transmittance
function. The algorithm needs the maximum extinction coefficient σmax inside
the medium. This coefficient is used to sample the distance according to the
Beer-Lambert-Law. After that, the sample is rejected or accepted according to
the real extinction coefficient σt(x) of the medium. If it is rejected, another step
is taken according to the same law, otherwise the sampled distance is returned.

We are not demonstrating here the validity of this method to sample the
distribution p(S) = σt(S)T (S). For the interested reader we suggest the original
article about the method by Woodcock and T.C. [1965].

Directional integral estimator
Now we can sample from the probability distribution function defined in 3.5.
The primary estimator for the integral inside the VRE in equation 1.9 in terms
of distance along the ray s′ = ||x − X1|| becomes

< L(x, ω) >1 = T (x, x + s′ω) Lv(x + s′ω, ω)
p(s′)

= Lv(x + s′ω, ω)
σt(x + s′ω)

(3.6)

However, the term Lv, which can be found in equation 1.10, is constituted by
another integral on the set of directions S2, which means that after sampling a
distance we have now to sample also a direction ω′. Also in this case we could
just sample according to an uniform distribution, but this will lead most of the
times to an high variance estimator. A much better idea is to sample according to

14

Algorithm 1: Woodcock tracking: technique to sample the distance along
a ray traversing an heterogeneous medium according to its transmittance
function. This function is used for importance sampling the integral in the
Volumetric Rendering Equation (equation 1.9).

function woodcockTracking(x, ω, σmax, smax)
Input : x : position on the ray,

ω : direction of the ray,
σmax : maximum extinction coefficient,
smax : maximum distance of the ray,
rand() ∈ [0, 1] random sample generator

Output: s′ : sampled distance along the ray
s′ = 0;
while s′ ≤ smax do

s′+ = − loge(1 − rand())/σmax;
if rand() < σt(x − s′ω)/σmax then

break;
end

end
return s’

some factor of the integrand, which is composed of the phase function fp(ω, x, ω′)
and the radiance L(x, ω′). The second term is more difficult to use as it is exactly
what we are searching for, so in this work we will sample according to the phase
function.

Henyey-Greenstein Function
In the first chapter, we have introduced the phase function as a characteristic of
the medium we are going to render. In our work we are using as approximation
of the Mie Phase functions the Henyey Greenstein function (abbreviated HG
function hereinafter), the reader interested on other phase functions can read
the comprehensive guide about multiple scattering by d’Eon [2016]. The Mie
phase functions describe the scattering behavior of light interacting with perfectly
spherical dielectric particles with different diameter size. The phase functions can
be characterized by the anisotropy g, which is the first angular moment of the
function:

g =
∫ 2π

0

∫ π

0
fp(θ′, ϕ′)cos(θ′)sin(θ′)dθ′dϕ′ (3.7)

where g ∈ [−1, 1] and, when it is positive, the light scatters predominantly into
forward directions, while if it negative it scatters predominantly into backward
directions. The HG function is parametrized by this value and can be written as:

fHG(θ, ϕ, g) = 1
4π

1 − g2

(1 + g2 − 2g cos θ)3/2 (3.8)

given this function a spherical direction (θ, ϕ) can be sampled inverting analyti-
cally the function (more information in the work of Pharr and Humphreys [2004])

15

as

cos θ = 1
|2g|

(
1 + g2 −

(1 − g2

1 − g + 2gξ1

)2)
(3.9)

ϕ = 2πξ2 (3.10)

where ξ1,2 ∈ [0, 1] are uniformly distributed random samples.

Volumetric integral estimator
Now we can write the estimator for the term Lv, sampling the direction ω′, with
the technique described in the previous paragraph. We have that the primary
estimator for the Lv term in the volumetric rendering equation 1.9 is

< Lv(x′, ω) >1 = Le,V(x′, ω′) + σs(x′)fp(ω, x, ω′)L(x′, ω′)
p(ω′)

= Le,V(x′, ω′) + σs(x′)L(x′, ω′)
(3.11)

and combining all the results obtained, we have the final estimator

< L(x, ω) >1 = Le,V(x′, ω′) + σs(x′)L(x′, ω′)
σt(x′)

= Le,V(x′, ω′)
σt(x′) + σs(x′)L(x′, ω′)

σt(x′)

(3.12)

where x′ = x + s′ω. In the work we are not considering medium which can emit
light, we will have Le,V(x′, ω′) = 0 and the equation simplify to

< L(x, ω) >1 = σs(x′)L(x′, ω′)
σt(x′)

= α(x′)L(x′, ω′)
(3.13)

where α(x′) is the albedo defined in 1.5. This estimator is very simple and
perfect for GPU implementation, where the albedo can be easily mapped to an
interpolated 3D texture. Using only one sample is usually not enough and, in its
general description, the final estimator using n samples is

< L(x, ω) >n= 1
n

n∑
i=1

α(x′)L(x′, ω′) (3.14)

Volumetric Path Tracer Algorithm
The volumetric path tracer uses exactly this estimator on every pixel of the image
sensor. In algorithm 3 a simplified version is presented only considering back-
ground light. The algorithm uses also the sampling from a Bsdf (Bidirectional
scattering distribution function), that we have not described in the previous para-
graphs (the reader can find its description in the work of Pharr and Humphreys
[2004]). In this work a physically-based Bsdf is used, called the GGX. Whenever
the point is a surface, the GGX is sampled instead of the phase function. We
sample the GGX using the distribution of the visible normal. In particular, we
are using the sampling strategy described by Heitz [2017] which does not require
any look up table to be computed.

16

Algorithm 2: Recursive estimator of L in the case we are only using back-
ground lighting

function radiance (x, ω)
Input : x : position of the camera ray,

ω : direction of the camera ray,
intersect(x, ω) → hit, smax : intersection function for the scene,
returns weather the scene was hit and the distance smax
σmax: maximum extinction coefficient in the scene

Output: Radiance in the point and direction (x, ω)
throughput = Color(1) ;
while (true) do

hit, smax = intersect(x, ω);
if (hit) then

s = woodcockTracking(x, ω, σmax, smax);
if (s ≤ smax) and insideVolume(x) then

x = x + ω s ;
ω = samplePhase(ω) ;
throughput = throughput · albedo(x) ;

else
x = x + ω smax ;
ω, weight = sampleBsdf(ω) ;
throughput = throughput · weight ;

end
else

return Le(x, ω)· throughput ;
end

end

Algorithm 3: Volumetric Path tracing algorithm
function volPT
Input : n iterations for the Monte Carlo estimator
Output: Rendered Image
Image = Image(0) ;
for pixel p in Image do

for n iterations do
x, ω = cameraRay(p);
p += radiance(x, ω) ;

end
p = p/n ;

end

17

Russian Roulette
Another technique usually implemented with path tracing is the Russian Roulette.
This technique permits to stochastically interrupt a path before reaching a light
source. The probability of interrupting can be associated with the amount of light
transported by the path. In this way is possible to interrupt with more probability
paths which gives smaller contribution to the overall result. This technique is also
unbiased if we modify our estimator by dividing for the survival probability of the
path. More information about this technique can be found in the work by Pharr
and Humphreys [2004]. In the software provided it is possible use the Russian
Roulette inside any of the volumetric path tracer showed. However, we didn’t
focus the research on this particular aspect.

3.2 GPU Architecture
In this section, we want to review some basics of the GPU architecture, that
we are going to consider as a data parallel computational platform, and the
characteristics of the CUDA platform.

Design Philosophy and Heterogeneous Programming
One of the most used classifications for computer architecture is the Flynn’s
Taxonomy. In this classification, the architectures are divided into 4 groups:

• Single Instruction Single Data (SISD) : this is the traditional serial archi-
tecture.

• Single Instruction Multiple Data (SIMD) : multiple cores execute the same
instruction at the same time.

• Multiple Instruction Single Data (MISD) : multiple cores use separate in-
structions on the same data.

• Multiple Instruction Multiple Data (MIMD) : multiple cores operate on
multiple data streams.

Another type of classification can be done based on the memory:

• Multi-node with distributed memory: processors are connected by a net-
work, each having its own local memory.

• Multiprocessor with shared memory: processors are either connected to the
same memory or through a low-latency link, e.g. PCI-Express or PCIe.

Finally, we will use other two properties to characterize an architecture:

• throughput (ops/cycle or Tflop/s): rate of operations complete per cycle,
usually calculated considering floating point operations and seconds (it can
be sometimes confused with latency, cycle or s, which is the waiting time).

• bandwidth (GB/s): rate at which data can be transferred.

18

DRAM

Control

Alu Alu

Alu Alu

DRAM

Cache

PCIe Bus

CPU GPU

Figure 3.1: CPU and GPU, heterogeneous programming

In this context, GPU is a multiprocessor with shared memory architecture that
utilizes SIMD groups, called warps. However, some of the features of the other
architectures are also present on NVIDIA GPUs. NVIDIA call their architecture
as Single Instruction, Multiple Thread (SIMT). At the base of the different perfor-
mance between CPU and GPU is the different design philosophy of the architec-
ture. Contrary to CPU, GPU are designed for high throughput and low latency
tasks. GPU is many-core architecture which contain a high number of cores and
high memory bandwidth. Each core is also very different from a CPU core. CPU
cores are heavy-weight and they are designed to handle complex control logic,
instead the GPU cores are very light-weight and optimized for data-parallel tasks
with simple logic. For this reason, both architectures should be used together
in a heterogeneous system for different scopes. Currently GPU cannot be used
standalone and execution should be initialized by CPU. Therefore, the CPU is
usually called the host and the GPU the device. In General Purpose GPU pro-
gramming (GPGPU) execution of code on the device can be divided in different
parts, which we will call kernels. The host code can call those kernels during
its execution and execute the code of the kernel on the device side. The calls of
those device kernels can also be asynchronous, allowing to the host to perform
more work while the device is running the kernel.

CUDA - Compute Unified Device Architecture
CUDA is a GPGPU platform introduced by NVIDIA for their GPU on 2006. It
is designed for scalable parallelism allowing to any CUDA application to leverage
whichever NVIDIA GPU they are running on. This is enabled by the usage of
three main abstractions:

• hierarchy of thread groups

• memory hierarchy

• barrier synchronization

19

Figure 3.2: Memory and Thread Hierarchy. All threads can also directly access
the read-only memory using the constant and texture memory. The concrete
Memory hierarchy showed is relative to the Kepler Architecture (compute capa-
bility 3.0)

These abstractions are then mapped to concrete implementation on the specific
hardware by CUDA. Figure 3.2 shows the thread and memory hierarchy and
how the memory hierarchy is mapped to the Kepler GPU architecture. The
programmer, to leverage all the parallelism of a GPU, must partition the multi-
threaded program into blocks of threads which execute independently and in any
order.

In the concrete, implementation of the CUDA model the GPU uses an ar-
ray of Streaming Multiprocessors (SM or SMX). The multiprocessors schedule
threads using SIMD groups of 32 threads called warps. However, threads in a
warp can have their own instructions and they are able to branch and execute
independently (also if this will not exploit the SIMD capability of the group po-
tentially serializing the program). After the Kernel launch, a multiprocessor can
get a thread block to execute. At this point, the warp scheduler partitions it into
warps with consecutive thread ID. Program counters and registers of each warps
are maintained on the multiprocessor for the entire life of the warp. For this
reason, the multiprocessor can switch between different warps with no cost. The
warp scheduler can also choose a warp, which active threads are ready to execute

20

their next instruction, while another warp is waiting (this is called in CUDA la-
tency hiding). The number of block and warps and consecutively threads, that
can be processed inside a multiprocessor, depends on the number of registers and
shared memory used in the kernel, compared to the resources available on the
multiprocessor. We will see what this means for the performance in 4. We want
also to point out, in this section, that a CUDA application does not have to be
bounded to the data which resides only on the GPU. The unified memory sys-
tem gives the possibility to have a single address space between CPU and GPU
memory (on newer SM architectures this means also on-demand page migration).
Moreover, CUDA’s zero-copy memory permits pinned memory location on the
CPU to be accessed on the GPU. This last feature is used inside our application
to give the possibility to load volume 3D textures, which are larger than the
Device Global memory. Another feature of CUDA is the possibility to perform
atomic operations. Those operations allow concurrent threads to perform read
and write operations on data shared in global memory. However, this type of
operation should be used carefully because it can potentially serialize the pro-
gram in case all the threads wants to access the same data. For what it concerns
shared memory, the system works differently. To achieve high bandwidth, shared
memory is divided into several memory modules of the same size. Those mod-
ules are able to serve different read and write requests simultaneously, as long as
the address requested resides in different banks. When two or more requested
addresses reside on the same bank it is called a bank conflict and the accesses are
serialized. However, there is an exception when multiple threads access the same
32-bit world, in that case the word is broadcast to all the threads requesting it (if
multiple threads request to write, only one will write on the address, but which
one is undefined). The banks are organized such that consecutive 32-bit words
map to successive banks allowing to linear access to not cause bank conflict.

Kepler Architecture
In this section we will detail the Kepler architecture (which is categorized by
NVIDIA with compute capability 3). As shown in figure 3.3 and 3.4 in this ar-
chitecture a multiprocessor consist of 192 CUDA cores for arithmetic operations,
64 double-precision units, 32 special function units, 32 load/store units allowing
source and destination addresses to be calculated for sixteen threads per clock
and 4 warp schedulers. Moreover, two types of cached memory are present: a
L2 cache shared by all the processors, used to cache global and local memory ac-
cesses, and a L1 cache, used to cache access to local memory (including register
spills). The same memory is also used for the shared memory. Each multiproces-
sor has also a read-only data cache which is used for constant or texture cache.
The memory transactions are of the size of 128-byte for memory stored both in
L1 and L2 cache and 32-byte if the memory is only cached in L2.

21

SMX SMX SMX

SMX SMX SMX

L2 Cache

PCI Express - Host Interface

Thread Block Scheduler

Memory

Controller

Memory

Controller

Memory

Controller

Memory

Controller

Memory

Controller

Memory

Controller

Figure 3.3: Kepler Architecture (compute capability 3)

22

Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

Core Core Core
Load/
Store

Special
Function Core Core

Interconnected Network

Shared Memory / L1 Cache

Texture

Texture

Texture

Texture

Texture

Texture

Texture

Texture

Texture

Texture

Register File

Read-Only Data Cache

Core Core Core
Load/
Store

Special
Function Core Core

Core Core Core
Load/
Store

Special
Function Core Core

Core Core Core
Load/
Store

Special
Function Core Core

Core Core Core
Load/
Store

Special
Function Core Core

Core Core Core
Load/
Store

Special
Function Core Core

Core Core Core
Load/
Store

Special
Function Core Core

Core Core Core
Load/
Store

Special
Function Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core CoreDouble

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Double

Figure 3.4: Streaming Multiprocessor (Kepler architecture compute capability
3)

23

4. Optimization Methodology
In this section we are going to present an overview of the method used to opti-
mize the volumetric path tracer. The chapter follows the design decisions that
someone should evaluate when approaching this type of problem. Different design
paths have different advantages and disadvantages that we are going to cover. In
figure 4.1 it is possible to see the exact design decisions tree. At the beginning,
we are going to examine how to use GPU and CPU together and this we lead
us to a decision on a single versus multi kernel approach. After that, we are
going to evaluate how to maximize the utilization of GPU regenerating threads,
which become idles during the computation. Finally, we are going to see how to
maximize the memory throughput and the data locality compacting together the
threads that are still active. In figure 4.2 there are some scenes that we are going
to use for the tests: two of them from the application field of 3D printing and
the other two from visualization. The volumetric path tracer tests showed in this
section are all running without Russian Roulette 3.1.

Testing Hardware
We will use for testing a MacBook Pro with CPU Intel Core i7 quad-core and
GPU Nvidia GeForce 650M with the following characteristics:

• Kepler architecture, compute capability 3.0

• Total amount of global memory: 512 MB

• Total number of registers available per block: 65536 (equal to registers per
SM)

• Maximum number of threads per block: 1024

• Total amount of shared memory per block: 49152 bytes

more details about the hardware are provided in the Appendix.

4.1 Host Control or Device Control

4.1.1 Single Kernel versus Multi Kernel
The topic of using a single ”megakernel” versus multiple lighter kernels has al-
ready been widely covered in the literature. A naive single kernel implementation
holds all the algorithm and requires all the resources associated with all the dif-
ferent parts of it. Nvidia OptiX (Parker et al. [2010]) utilizes a similar but more
sophisticated approach. In this framework, a Just-In-Time compiler combines all
the different stages of the path tracer, in the form of PTX (assembly language
for NVIDIA GPU), into a single kernel. The kernel is formed as a state machine
where, to minimize execution divergence, a scheduler selects a single state for an
entire SIMT unit. If a thread is not requiring that state, it remains idle during
that iteration. Laine et al. [2013] compared the traditional single kernel approach

24

Figure 4.1: Design decision tree. This tree represent the design decisions made to
optimize a GPU path tracer. In the first level, the first decision is regarding the
use of a single or a multi kernel and more in general, giving more control to the
device or to the host. The second level contains all the possibility presented to
optimize the utilization of the GPU. Finally, the last level contains the possibility
to decrease data access latencies in a volumetric path tracer.

to a wavefront formulation, which uses different kernels for different control flows.
This method allows to completely avoid code divergence, i.e. sorting the paths
based on their next interaction, dividing them into different bins and launching
a kernel only for the paths in the same bin. Moreover, the kernels launched are
perfectly specialized for the task and they can utilize the GPU resources com-
pletely. However, this work is not containing this possibility. There are different
reasons for that:

• Dynamic parallelism and global device synchronization: supported only
by the newer CUDA GPU (compute capability 3.5 and higher), dynamic
parallelism gives the ability to a single CUDA thread of launching a new
kernels with its own configuration. This technique reduces the need to
transfer execution control and data between host and device (Nvidia [2017]).
Moreover, the global device synchronization introduced with CUDA 9.0
(using special cooperative groups) removes the need of launching a new
kernel only for synchronizing all the threads running on the device.

• The type of scenes that we are analyzing in this work contains just one
object: the volume that we want to render. For this reason there are not
many different type of interactions. The only two cases are if the analyzed
point is inside the volume or on the boundary (exactly how it is explained
in the section 1.3). However, the wavefront formulation is best suited for
scenes with many different and complex materials.

Inspired by results showed by others like Davidovič et al. [2014] and van Antwer-
pen [2011] the only multi kernel approaches that we are going to analyze are
composed by a maximum of 2 kernels. The table 4.1 shows the difference on
using a naive approach with a single kernel call or multiple kernel calls. The
naiveSK method (naive with a single kernel) consists of a simple volumetric path
tracer implementation where each thread computes only one path and all the

25

(a) ad scene: rendering
of a slab with grid reso-
lution (320,320,100). The
texture ”printed” on the
surface has a depth equal
to 10 (10% of the total
resolution depth) and it
is assigned to the albedo
volume, the rest of the
albedo volume is white.
The density volume is al-
ways constant and equal
to 100.

(b) cgg-logo scene: ren-
dering of a solid unit cube
with a grid resolution of
(100,100,100). The tex-
ture ”printed” on the sur-
face has a depth equal
to 10 (10% of the total
resolution depth) and it
is assigned to the albedo
volume, the rest of the
albedo volume is white.
The density volume is al-
ways constant and equal
to 100.

(c) artifix scene : ren-
dering of the publicly
available artifix Data set
(Osirix) which have grid
resolution of (128, 87,
128). The data has been
used to create the den-
sity volume, the albedo
has been created from the
density using a transfer
function which maps the
density from gray to red
to blue based on the den-
sity value. The maximum
density value is 100.

(d) manix scene: ren-
dering of the publicly
available Manix Data set
(Osirix) which have grid
resolution of (128, 115,
128). The data has been
used to create the den-
sity volume, the albedo
has been created from the
density using a transfer
function which maps the
density from gray to red
to blue based on the den-
sity value. The maximum
density value is 100.

Figure 4.2: Test scenes. top: scenes for 3D printing application, bottom: scenes
for data visualization.

26

Table 4.1: Single Kernel versus Multi Kernel (naive). The speed of the methods
is analyzed in terms of millions of traced rays per second (rays/sec). The test
has been done using the scene in figure 4.2b rendering a 400x400 image for 100
iterations (number of samples for the Monte Carlo estimation)

Method rays/sec
naiveSK 3.91
naiveMK 1.19

data is stored on local memory (the algorithm can be found in the work of Davi-
dovič et al. [2014]). The naiveMK method (naive with multiple kernels) consists
of a simple volumetric path tracer divided in two kernels. The first kernel is
generating the paths and computing the first intersection with the object, while
the second kernel extends the active paths computing a new intersection with the
scene. It is clear that the single kernel approach wins over the multi kernel one
in terms of speed. However, there are also advantages on using multiple kernel
calls. From a user perspective, using smaller kernels allows the CPU to take the
control of the application and, in case only one GPU is available in the system,
it avoids to freeze the user interface for too much time.

4.1.2 Image Tiling
Another possibility for interleaving the control between host and device is using
image tiles. That is, the image is divided into equal tiles and the device can work
on each of them separately at the same time. This technique allows to lower the
memory requirements for running the software, because we need only to store the
size of one tile. This also means that the rendering is divided into multiple kernel
calls. Each of this kernels have to render a single tile and for this reason is faster.
In this perspective, it is important to not use tiles that are too small, because this
will decrease the utilization of the hardware and therefore the performance (we
will talk more about utilization in the next section). The consequence is that, in
order to obtain the maximum performance, the size of the tile should depend on
the type of hardware. The tile size is also affecting the specific algorithm in use.
Most of the algorithms that we are showing in this work have different memory
requirement and different behaviors depending on the tile size. However, from
our tests it emerges that the behavior of each algorithm using different tile sizes
is comparable with the use of different number of samples. Potentially, a tiled
image allows also to decrease the time to transfer the image from the device to
the host. In the practical case, however, the size of the image is usually small
and the time to transfer it is not comparable with the time for computation.
For this reason, also using a second buffer for the image tile (this technique
is usually called Double Buffering) and the CUDA asynchronous memory copy
to overlap computation and image transfers, the performance improvement is
negligible. Table 4.2 shows the results of using different image tiles. From this
table it is possible to see that launching multiple kernels on different image tiles
is not affecting the performance as far as the number of tiles is not becoming too
high. Indeed, the computation remains stable until the number of pixel processed

27

by the algorithm becomes too small, decreasing the utilization of the device for
the kernel call. This result shows also that the real performance bottleneck on
dividing the path tracing task is not represented by the kernel launch overhead
but from the repetitive loading and storing of the same data.

Table 4.2: Different image tiling settings used for rendering a 1920x1920 image
with the scene in figure 4.2b. In the table the number of paths processed per
tile is compared to the time to render the all image. Note that, opposed to the
naiveSK, the streamingSK kernel launching configuration does not depend on the
number of paths processed but rather on the threads available on the GPU. For
this reason when the number of paths processed becomes low the naive method
improve its performance while the streamingSK decrease in performance.

tiling setting
(1,1) (2,2) (4,4) (8,8) (32,32) (64, 64)

n. paths per tile 18432000 4608000 1152000 288000 18000 4500
StreamingSK 61.27 67.98 72.72 76.13 90.66 224.04

regenerationSK 7.99 10.02 9.44 9.48 34.11 98.40
naiveSK 219.47 223.65 221.93 224.59 224.85 123.32

4.1.3 Summary
In this chapter we have seen the first design decision that should be made when
approaching this problem: giving the control of the program to the host or to
the device. In the first case, the advantage is to have a more responsive UI and,
if the kernels are well divided into different tasks, it allows to use efficiently the
device resources for the task. In our case, most of the computation concerns the
same simple task: the interaction with the medium. For this reason, dividing the
computation will not improve the performance. We have also seen another way
to divide the computation by rendering separate image tiles. This allows to use
the same algorithms on a different hardware, whose memory requirements depend
on the image tile size. Moreover, overlapping communication and computation
decreases the latency on getting the resulting image. The tile size is affecting also
the utilization of the GPU which is upper bounded by the number of paths to
compute. Indeed, the number of paths to compute an image tile is equal to

paths = tile.width · tile.height · iterations.
While the number of iterations is given by the user, the tile width and height
can be specified according to the hardware used, which allows to improve the
utilization for the specific hardware. In the next chapter we will see which other
factors can decrease the utilization of the GPU and how to prevent it.

4.2 Maximizing Utilization and Hiding Multi-
processor Latency

The objective of maximizing the utilization of the device is achieved when the
device is always active until the end of the computation. In a path tracer, the

28

problem is given by the different lengths of the paths computed. When a path in
a thread has terminated, that thread will not be utilized until the termination of
all the others. To overcome this inefficiency Novák et al. [2010] have proposed
to use path regeneration. This technique consists of using a persistent thread
system (more information about persistent thread programming can be found in
the work of Gupta et al. [2012]) where new paths, taken from a global pool of
paths, are assigned to idle threads (the path is therefore regenerated).

Another problem that can affect the utilization on the system is the number of
registers and the shared memory necessary for the kernel. Most of the time those
resources are stored in a fast memory (L1 cache in devices with compute capabil-
ity 3 or higher) that is limited. When the kernel reaches this limit the maximum
number of resident blocks in a multiprocessor is decreased. If the kernel requires
more registers than available on the multiprocessor, then the compiler will at-
tempt to minimize register usage, or it can be forced to do it, while keeping them
stored in the local memory (register spilling). On the other hand, if the kernel
requires too much shared memory the only solution is to decrease the number of
resident block in a multiprocessor. When the number of threads resident on the
same multiprocessor is high then the latency of a inactive warps, which cannot
perform their next instruction, can be hidden efficiently. The full utilization in
this case is achieved when the warp scheduler can always issue some instruction
for some warp during the latency period.

4.2.1 Persistent Thread
The persistent thread style of programming helps a developer to separate the
task to compute from the hardware that is running it. The threads are active
for the entire duration of a kernel and every thread gets new work from a work
queue when it finishes its current task. In our case this means regenerating
the terminated paths and tracing new ones. A new path can be created by
using an identification number like in algorithm 4. For this reason, the work
queue is represented by one global value that is atomically incremented during
regeneration. In this paragraph, we analyze the different approach that we may
take for regenerations:

• Thread regeneration: a single kernel is launched and new paths are assigned
to every thread. When the thread becomes inactive the path is regenerated.

• Warp regeneration: a single kernel is launched and new paths are assigned
to every warp. When all the threads in a warp become inactive, all the
warp is regenerated incrementing the atomic counter only once per warp by
the size of the warp.

• Block regeneration: a single kernel is launched and new paths are assigned
to every block. At every path extension, if the path queue is not empty,
all the threads in a block are synchronized and all the inactive ones are
regenerated.

• Device regeneration: multiple kernel are launched, one kernel is performing
regeneration and another one path extension. If the path queue is not
empty, after each extension all the inactive threads are regenerated.

29

Those regeneration techniques require different types of synchronization points:
the first one is the classic implementation where if a thread becomes inactive it
is immediately regenerated, i.e if only one thread is regenerating the rest of the
threads in the warp, we have to wait for it before continuing. The second one
is using the warp vote functions (which can be found in the documentation by
Nvidia [2017]) to decide weather to regenerate or not the warp. In CUDA 9 and
on devices with compute capability higher than 3.0 this can be efficiently done
using the warp shuffle functions, which allows to exchange values between threads
in the same warp, to get the right path for each thread. The third one requires
synchronization of all the threads in a block and it regenerates all the block all
together. This latter is similar to what is done by Frolov and Galaktionov [2016].
Finally, the last one is regenerating all the processed paths and requires to syn-
chronize all the devices. We did not include this last one in our study because we
have already tested that the multi-kernel approach is not favoring our settings.
In the implementation presented the synchronization points are performed after
each path extension (unless the path queue is empty). This can be not optimal,
as the synchronization point for regeneration should be placed exactly when the
performance risks to decrease for not having enough active threads (in the next
paragraph we will see what exactly this means). However, this is not only hard-
ware dependent but also scene dependent. For this reason, we did not include
this variation in this work. The table in 4.6 shows the results of the different
methods on our scenes. We can see that the regenerationSK (regeneration with
a single kernel) on a single thread works best on the scenes with constant density
(cgg-logo and ad) for which the warps are almost always synchronized. In the
other two scenes the warp regeneration is performing better. When the paths
start to differentiate, this method allows to maintain the coherence inside a warp
by restarting all the warp at once.

Algorithm 4: pseudo-code of a function which regenerate a thread. The
algorithm uses a global counter for the number of rays already traced. This
counter is used to define the identification number of a ray which is also
used to create the ray starting from the camera

function regenerate
Input : thread: thread to regenerate,

paths head: global counter for the paths
Output: thread: regenerated thread
path id = paths head ++ ;
if path id > total paths then

thread.active = false ;
end
pixel = getPixel(path id);
thread.path.ray = cameraRay(pixel);
thread.path.throughput = Color(1);
thread.active = true;
return thread;

30

Table 4.3: comparison of different types of regeneration on the scenes presented
in figure 4.2. Three regeneration approach are taken in consideration: regen-
erationSK (thread) doesn’t require any type of synchronization and regenerate
a thread immediately after it becomes idle. regenerationSK (warp) require all
the warp to be idle before regenerating. regenerationSK (block) is synchroniz-
ing all the block and regenerating only when all the block is idle. Finally, the
naiveSK approach is a simple volumetric path tracer which is not performing any
regeneration.

method rays/sec
cgg-logo ad artifix manix

naiveSK 3.88 2.13 8.34 8.45
regenerationSK (thread) 81.62 42.37 11.80 11.42
regenerationSK (warp) 17.13 17.05 12.11 14.82
regenerationSK (block) 3.52 3.21 7.35 7.41

4.2.2 Occupancy
The occupancy of a kernel consists of the number of active warps (SIMD group)
on a multiprocessor when launching the kernel. If the occupancy is maximal,
then all the warps that can simultaneously reside on a multiprocessor are active
and the warp scheduler can hide the latency of the warps which cannot execute
their next instruction. However, if the kernel requires too many registers or too
much shared memory, it have to limit the number of threads active on a single
multiprocessor. If the kernel requires too much shared memory, there is nothing
that the compiler could do to increase the occupancy. However, if the problem
is the number of registers used, then one possibility is to limit this number using
register spilling. In our case, the kernel of our volumetric path tracer requires
approximately 64 registers for the compiler, which limits the occupancy to 50%.
To achieve the 100% of occupancy we could force the compiler to reduce the
number of registers used by our path tracer.

Bounding Register Usage

Bounding the number of registers used by a kernel is not always a good idea.
The compiler is usually limiting the number of register used by itself and tries to
make the best decision between increasing the occupancy and efficiently storing
memory on registers. Sometimes, however, it is possible that this decision is not
the one that gives the best performance. For this reason, another possibility is to
force a kernel to use a minimum number of blocks per multiprocessor by limiting
even more the number of registers used. In the table 4.4 we can see the effect
of achieving maximum occupancy using this technique. All the results are worse
respect to the version with half the occupancy in table 4.6. By analyzing the
process, it is possible to see that also if the number of warps in the multiprocessor
is maximum, the latency is higher than before. The time required to get the
spilled registers is therefore higher than the latency hiding capability of the device.

31

Table 4.4: maximize occupancy decreasing registers usage. In those results the
number of register used by the kernels is bounded so that the device can achieve
maximum occupancy. However, comparing those results with the ones in table
4.6 is possible to see that this method is actually performing much worse than
the previous one with only 50% of occupancy

method rays/sec
cgg-logo ad artifix manix

regenerationSK (thread) 39.04 32.81 12.66 11.37
regenerationSK (warp) 4.37 7.02 11.92 10.95

Maximize Register Usage

Increasing the occupancy is not the only way to hide threads latency; another
possibility is to leverage the instruction-level parallelism. Indeed, a warp that
has subsequent independent instructions can hide the latency of an instruction
performing the next one. This technique allows to lower the occupancy needed
to obtain the device peak of performance, which can be calculated with Little’s
law:

parallelism = latency · throughput

We have used this technique in our volumetric path tracer by assigning more than
one path to each thread. This allows to decrease the dependency among subse-
quent instructions and, therefore, to hide the latency inside a single thread using
the instruction-level parallelism. Recent tests Volkov [2015] have demonstrated
how the use of more registers per thread, using less threads per multiprocessor,
can lead to better performance with smaller occupancy. We have also tested our
volumetric path tracing with a smaller occupancy, but without any visible im-
provements. The conclusion that we may take is that in this case the compiler is
doing an optimal choice about the number of registers and threads to use.

4.2.3 Summary
We have seen in this section different application of the persistent thread tech-
niques, which differ on synchronization points. Moreover, we have seen some tech-
niques to achieve better performances at lower occupancy utilizing instruction-
level parallelism and more registers per thread. However, the difference in latency
between arithmetic operations and memory operations is high and the best way
to improve the performance is decreasing this gap. For this reasons, in the next
section, we will discuss about localizing memory access inside the kernels to max-
imize the cache usage and decrease the memory access latency.

4.3 Data Locality and Code Divergence
We have discussed until now all the performance limiting factors regarding the
full utilization of the GPU and the logic communication between host and device.
In this chapter, we are going to discuss about one of the most important limiting
factor in GPGPU: the bandwidth. In the section 3.2 we have seen that access

32

on every level of GPU memory hierarchy have different bandwidth. Localizing
the data access inside a kernel is a key factor for decreasing the number of low
bandwidth data transfers. Code divergence is another limiting factor which can
drop the performance causing the instruction throughput to decrease. When a
warp executing a kernel meets a flow control instruction, it diverges if the threads
in the warp follow different flows of execution and if the different instructions are
substantial (otherwise predication is used). The hardware maintains a bit vector
of active threads and executes the code once for the active and then for the
inactive. When all the executions paths are complete the warp re-converge to
the original path. All those limitations are present in a Monte Carlo Path Tracer
that is based on a random control flow and thus random memory access. It
is not straightforward to create a predetermined data access pattern that can
be exploited in this case. Dietger et al. van Antwerpen [2011] have proposed a
solution based on stream compaction of the active threads at every path extension.
In this solution, paths that are still active are compacted together and stored in
the global memory of the device. In this section, we will propose a new method
that aims to merge the benefits of compacting with the reordering of the rays to
exploit warp and data coherence.

4.3.1 Compaction
As we have already discussed in the introduction of the chapter, active thread
compaction allows to separate the threads into active and idle. There are two
main advantages on using this approach for a MC path tracer:

1. SIMD efficiency increase: the compaction of the active threads allows to
have warps fully active or fully inactive.

2. Primary ray coherence is maintained: the regenerated paths usually fol-
low the same control flow path during the first iteration without any code
divergence and access the same GPU caches exploiting data locality.

Also in this case we want to analyze the different approaches to compaction:

• Device Compaction (StreamingMK): all the active threads inside the de-
vice are compacted together. The methods requires two streams of global
memory for path data one in input and one in output. The compaction is
efficiently performed using an atomic operation which tracks the number of
elements written to the output stream. This method requires two kernels,
one for regenerating inactive paths and one for extending the paths.

• Tiled Block Compaction (StreamingSK): the active threads are compacted
only inside a block. The path data is still stored in the global memory, but
the compaction of the active threads is performed only on a tile of this data,
large as much as the number of threads inside a block. The graphical output
of the compaction can be seen in figure 4.4 and pseudo-code in algorithm
5.

In both cases the compaction is performed by the following steps (which are
graphically showed in figure 4.3):

33

1. an exclusive sum on the active labels of the thread allows to find the position
of each active thread inside the output stream (which is the same as the
input for the tiled block compaction)

2. the number of active threads is updated (the Device compaction requires
an atomic operation).

3. the active threads write their data on the output stream.

Figure 4.3: steps for compacting a group of threads. In the top active threads
are colored in orange and associated with the label 1 inside a row of blocks
representing a linear memory of threads. In the second row of threads from the
top, an exclusive sum operation is performed on the active labels. In the third
row the computed sums are used for identifying the closest empty thread in the
memory. The atomic counter is incremented with the last sum computed and the
threads which reside after the position indicated by this counter are regenerated

In our tests we have seen a performance boost of the block compaction versus
the device compaction. We think that most of the performance gain is given by
the use of a single kernel. However, compared to the RegenerationSK on a warp
the StreamingVolPTsk is getting better result, demonstrating the improvement
given by the compaction.

34

Algorithm 5: Kernel which is using block compaction for the active threads.
In this algorithm thread is referred to the data which a thread must use for
computation. For every path extension the current thread data is reloaded
with the function loadThread. After that the total active threads in the
block is checked to understand if the thread must regenerate. After regener-
ation all the block is synchronized (function synchronizeBlock()). The active
threads are then extending their paths. After this operations an exclusive
sum over all the active labels of the threads is performed. Finally the still
active threads are storing their data in the compacted position of the global
array of threads.

kernel streamingSK
Input : threads: global memory with the information of each thread,

scene: scene to render
Output: output: image memory
shared total active = 0 ;
do

thread = loadThread(threads) ;
if thread.id ≥ total active then

paths head = regenerate(thread, paths head);
end
synchronizeBlock();
if thread.active then

thread, image = extend(thread, image, scene);
end
total active, compacted position = exclusiveSum(thread);
if thread.active then

threads[compacted position] = thread;
end

while total active > 0 or paths head < total paths;

35

Table 4.5: comparison of different types of compaction. The streamingSK method
is compacting all the active threads that are in the same block, whereas the
streamingMK is compacting all the active threads in all the device. Those two
new methods are compared with the regeneration methods which are not using
compaction

method rays/sec
cgg-logo ad artifix manix

regenerationSK (thread) 81.62 42.37 11.80 11.42
regenerationSK (warp) 4.37 7.02 11.92 10.95

streamingSK 52.69 37.81 7.42 8.02
streamingMK 6.59 4.70 5.44 5.18

Figure 4.4: Block Compaction. This figure shows how the active threads are com-
pacted using the StreamingSK algorithm. The memory containing the threads is
divided in blocks and only inside each block the compaction is performed.

4.3.2 Reordering
In this section we are going to discuss a new method which is based on the
previously detailed StreamingVolPTsk. We have seen in the previous chapter
that compaction is helping on maintaining high SIMD efficiency and primary ray
coherence. However, the secondary rays are usually not coherent and they are
compacted to the others active rays independently on their position or direction.
The method that we propose consists in using the Morton order, also called Z-
order, to reorder the active rays while compacting. Moon et al. Moon et al. [2010]
have already used this technique to achieve a cache-oblivious ray reordering for
path tracing; they achieved more than an order of magnitude performance for big
models that cannot fit into main memory. Our scope is extending this work to
GPU and integrating it with the already discussed streaming compaction.

Morton Order
The Morton order (also called Z-order for its characteristic shape as in figure 4.5)
is based on a space filling curve which is a function that maps multidimensional

36

Figure 4.5: Z-Order. from the left to the right we have: 3D z-curve with resolution
2X2X2, 3D z-curve with resolution 4X4X4, 3D z-curve with resolution 8X8X8.
It is important to notice how the 3D points are mapped into a linear curve so
that points that are near in the 3D space are near also in the curve (the image is
taken from the website http://asgerhoedt.dk)

Figure 4.6: Morton code generation: this chart explain the algorithm used to
calculate the Morton code (z-value). First the fractional part of the coordinates
is taken. Then those coordinates are expanded using 0 values. Finally the coor-
dinates are combined together to create the final code.

data to one dimension, preserving locality of the data points. In our implemen-
tation, the z-value of a point is calculated by interleaving bits of the quantized
coordinates of the multidimensional data Moon et al. [2010]. The quantized
coordinates, which are lying between 0 and 1, are transformed linearly into 10-
bit integers. Those integers are then expanded using zeros between the bits of
each coordinate, so that the different coordinates can be combined together, in-
terleaving their bits, into a single value. This value represent the z-value of the
coordinate (graphical structure of the method can be found in figure 4.6). The
resulting ordering correspond of a depth-first traversal of a commonly used 3D
data structure called Octree.

Z-Sorting
In our contest, the main source of data is given by the volumetric data that is
accessed through the texture memory of the device. Texture accesses in CUDA
give best performances in applications where memory access patterns exhibit
spatial locality. For this reason reordering rays using the z-order should improve

37

the access pattern on the texture. The coordinate that have to be used for that is
the position of the ray inside the volume. Thus, the bounding box of the volume
is used to quantize the ray position. The quantized position are then transformed
as we have previously seen into z-values. Finally, we are reordering the rays using
the block radix sort, where the keys used for reordering are the z-values of the
ray position (as shown in figure 4.7. If the thread is not active the maximum
z-value is associated with the ray. This method allows to sort and compact at
the same time the threads inside a single block. We have analyzed two possible
implementation of the z-sorting:

1. Sorting and compacting before texture access (StreamingSK with sorting
variant): consists in using the same tiled block compaction already seen
before, but this time, instead of using a scan operation to compact the
active rays, we are using Morton sorting.

2. Sorting and compacting after texture access (SortingSK) : consists in delay-
ing the texture access for the albedo volume of the volumetric path tracer
after reordering and compaction of the rays (a pseudo code of the algorithm
can be found in 6).

The first option should help to create more coherent rays, which in the next path
extension will have more probability to access data that is near in memory. The
second option uses a shared array of labels describing if the albedo texture is
accessed by the thread during the last extension. This array is then used after
reordering and compaction to decide which of the reordered paths need to access
the albedo texture. Finally, the texture is accessed by the reordered threads.
That is, the last option allows to access the texture with the more coherent way
given random access positions.

4.3.3 Summary
In this section we have discussed different techniques to improve data locality and
thread divergence. Compaction allows to create coherent primary rays and to
improve SIMD efficiency, while reordering of rays tries to improve secondary rays
coherency inside the volume. Unfortunately, the results show that the increased
data coherence are not affecting the performance of the algorithm. One of the
reasons for this behavior could be the too high texture resolution compared to the
number of sample points inside the volume, represented by the texture origins.
If the ratio of those two values is too big, then the method cannot explore data
coherence by reordering the rays. Indeed, in this case, considering the random
position of the rays inside the volume it is improbable that their position will be
close. Therefore, even if the method is accessing the texture in a coherent order,
the texture cache is not big enough to store the values between one texture access
and the next one.

38

Figure 4.7: z-reordering of the data. In this image is explained the reordering
methods used in this work. At the top the points inside the volume (orange blocks
inside the cube) that correspond to a thread in the global memory (represented by
a row of blocks) are placed independently on their position inside the volume. In
the bottom the threads corresponding to the points in the volume are reordered
based on the z-value of those points and compacted.

39

Algorithm 6: kernel which is using z-sorting to reorder rays and it ac-
cess the texture after the reordering. This algorithm is very similar to the
streamingSK algorithm 5. The only difference here is that here reordering
instead of compaction is performed and the albedo texture access is delayed
after the reordering.

kernel sortingSK
shared total active = 0;
shared tex access[n threads] = false;
do

thread = loadThread(threads);
if thread.id ≥ total active then

paths head = regenerate(thread, paths head);
end
synchronizeBlock();
tex access, thread, image = extend(thread, image, scene, tex access);
sorted position = blockZSorting(thread);
total active = sum(thread);
thread = swapThreads(thread, sorted position);
if tex access[sorted position] then

thread = accessTexture(thread);
end

while total active > 0 or paths head < total paths;

Table 4.6: sorting comparison: in this table two different sorting methodologies
are adopted. the first one, streamingSK (sorting) is behaving exactly like the
streamingSK with the only difference that the sorting with the z-order based on
the ray position is used instead of the compaction. The second one, sortingSK,
have the only difference of postponing the texture access after the reordering
like in algorithm 6. It is clear from the table that the sorting methods are not
performing better than the other ones on those scenes.

method rays/sec
cgg-logo ad artifix manix

regenerationSK (thread) 81.62 42.37 11.80 11.42
regenerationSK (warp) 4.37 7.02 11.92 10.95

streamingSK (compaction) 52.69 37.81 7.42 8.02
streamingSK (sorting) 20.41 17.61 6.78 6.74

sortingSK 20.90 17.83 7.02 6.87

40

5. Implementation Details
In this chapter we are going to cover some details on the implementation of
the previously described algorithms. Software design is particularly difficult in
CUDA, as to achieve the maximum performance all the branching decision must
be made as early as possible. Furthermore, there is no possibility to use virtual
functions, abstraction and classic polymorphism. We will see in the next section
how we can deal with those constraints and how to create a as generic as pos-
sible volumetric path tracer in CUDA. The solution proposed is the base of the
implementation provided in the attachment 6.2.

5.1 Generic Programming
To improve code re-usability and flexibility many of the most important CUDA
libraries like CUB and thrust, which we are also employing inside the project, use
Generic Programming. This technique leverages the power of C++ templates to
create a compile-time abstraction layer. That is, all the callback or virtual classes
are substituted by a template. This template will represent a data structure which
must contain all the functions and members requested. In the case of virtual
functions this is done with the use of Functors: data structure which define the
operator (). In all the implementations of the volumetric path tracing provided
this technique is used. The only template which must be defined is the Scene.
This template requires to define an intersection structure, called SceneIsect,
which contains all the information about the intersection with the scene. From
the scene should be also possible to access the medium and the BSDF based on
the information on the intersection structure. Sampling of the distance with the
woodcock tracking 3 and of the albedo is also done using a template Medium.
For this reason, the implementation of the kernels are completely general and re-
usable. Every type of scene can be substituted to the template without requiring
any change for the kernel. Moreover, this system allows to create custom device
scene and to improve the performance of the method based on the type of scene.
In figure 5.1 is shown a part of the software architecture relative to the kernel
composition. The right kernel with the right scene is selected at run-time by a
RenderFactory which creates the renderer based on a configuration object.

5.2 Scene Assembler
The software provides a configuration system that is flexible and easy to extend.
All the configurations for all the algorithms are stored inside a single Config
object, which is used to initialize all the renderer. This configuration object,
however, can be populated using different systems. In this moment, the only
interface with a user wanting to use the software is represented by the command
line. The commands provided by the user are analyzed by a ConfigParser ob-
ject which has the ability to parse and create a Config object. The command
line is used principally for configurations relative to the algorithm used for ren-
dering. For the configurations relative to the scene, another object is used: the

41

Figure 5.1: kernel launch software architecture. The figure shows the method
used to create generic implementation of the volumetric path tracing without
affecting the performance. Concretely, different implementation are compiled for
each different variant of the algorithm. The template interfaces permits to do
that without affecting re-usability of the code.

SceneBuilder. The SceneBuilder is an interface which allows to load different
scene types without affecting the normal work-flow of the renderer. In this mo-
ment, there are two implementations of this interface: the XmlSceneBuilder and
the MhaSceneBuilder. The first one allows to load the medium from a Mitsuba
Xml scene file, while the second one from a VTK mha volume format. Which
one of those builders to use is chosen by the ConfigParser object which selects
the right one based on the command line argument provided by the user. Finally,
the SceneAssembler provides an interface between the SceneBuilder and the
ConfigParser and is also responsible for the creation of the Scene object, which
will be placed inside the final configuration object of the renderer. The figure 5.2
shows a charts of the system just explained.

5.3 Interactive Renderer and Transfer Delega-
tion

There are two main configurations to run the software: testing mode and inter-
active mode. The testing configuration works only by command line and allows
to benchmark one of the algorithms presented in the previous chapter. The user
can specify the number of trials and the software will run the algorithm the
number of times specified, returning the the mean time, standard deviation and
rays/sec for the algorithm on the given scene. Instead, the interactive mode uses
the GLFW library, which is an OpenGL multi-platform library, to create a new
window where the scene is rendered one iteration for every frame. The interac-
tive renderer works as an additional layer upon the normal renderer. There are
different objects which allow to decouple the different elements of the system:

42

Figure 5.2: Configuration Architecture. In this image is shown the system used
to permit the loading of different scene formats inside the software. Moreover, the
SceneBuilder interface provide an extension point for the loading of even more
formats.

43

• GLViewController: allows to create the main window. By running the
OpenGL main loop, it draws the pixel buffer object on the window and
controls the InputController and the BufferProcessorDelegate.

• InputController: is an interface which allows to use the GLFW events
to modify the scene. An implementation is the CameraController which
allows to orbit the camera around the center of the object during the ren-
dering.

• BufferProcessorDelegate: is an interface which allows to modify the
OpenGL pixel buffer object. The only implementation provided is the
CudaInteractiveRenderer which takes the normal renderer and uses it
to render the next frame on the OpenGL pixel buffer object. To make
this possible, the object leverages the power of the interoperability between
CUDA and OpenGL.

However, there is a difference between the normal renderer and interactive ren-
derer and it depends on the output of the renderer. In one case the output must
be transfered in the host memory, while in the other one it should be transfered
in another buffer always inside the device memory, so to use the interoperability
between CUDA and OpenGL. For this reason, the CudaVolPath uses a dele-
gate object to transfer the output buffer from the source to its destination. The
interface of this delegate is called Buffer2DTransferDelegate and three imple-
mentations are provided in the software:

• HostImageBufferTansferDelegate: it is the basic method which transfers
the buffer from the device memory to the host memory.

• DeviceImageBufferTansferDelegate: this transfer delegate transfers the
buffer from the device memory to device memory.

• DeviceTiledImageBufferTansferDelegate: works exactly like the previ-
ous one but it allows to update the image one tile per frame.

Those transfer delegates can take as an argument a Functor, which must be
used on the output image before the transfer is complete. In the CudaVolPath
this transformation allows to scale the rendering output by the number of itera-
tions of the Monte Carlo estimation. Also the transfer delegate is chosen by the
RenderFactory at the beginning, based on the launching configuration provided
by the user. All the system is shown in figure 5.3.

5.4 Zero-Copy Volume
Storing all the volume texture inside the device memory is not always possible.
Sometimes the volume is too big and it cannot fit inside the memory available
in the hardware. For this reason, the software allows to store the volume data
inside the host memory. It is clear that this is not a good idea considering
that the bandwidth between CPU and GPU is much lower than the bandwidth
with the DRAM. The render will be, in this case, much slower on accessing
the volume, while with the use of the texture cache this will happen only if

44

Figure 5.3: Interactive Renderer Architecture. The interactive renderer has been
created without compromising the generality of the algorithm. The algorithm
created can be used inside a BufferProcessorDelegate which is providing the data
necessary to the GLViewController for rendering the image frame by frame.

there is a cache miss. In the newer devices (compute capability 6.x or higher)
this can be implemented more efficiently using the managed memory, that has
inside a page fault mechanism, for which memory pages can be stored inside the
device local memory. However, our target architecture is the Kepler (compute
capability 3.0), so the software does not use this technique. Instead, the zero
copy memory is used, this technique allows to use a page locked memory on the
host directly inside the device. Unfortunately, it is not possible at the moment to
create a CudaArray, meaning memory layouts that are optimized for local texture
fetching, with this type of memory. Therefore, we create the texture using the
linear memory pointer. This has the disadvantage of not exploiting the three-
dimensional data locality, inside the texture making useless algorithms, like the
previously described sortingSK.

45

6. Discussion
In this chapter we will discuss about some of the results we have reached. We will
compare the render time, achieved with the methods explained in the chapter 4,
with a renderer commonly used by the Computer Graphics research community:
the Mitsuba renderer by Jakob [2010]. Moreover, we will discuss some correlation
between the scenes and the best performing method.

6.1 Results
In table 6.1 we can see the first comparison of the Mitsuba renderer with the scenes
presented in figure 4.2. There are multiple algorithms that can be used inside the
Mitsuba renderer to render the scene, however the algorithm that works best in
this type of scene is the simple volumetric path tracing (called volpath simple).
Contrary to our methods, this algorithm is also using shadow rays. For this
reason, the total number of rays traced for this algorithm is calculated by adding
the shadow rays and the normal rays traced. The results show that the number
of rays traced every second by the Mitsuba volumetric path tracer is much lower
than any other algorithm. In the scenes used in this comparison the density
is constant and the algorithm that is performing better is the regenerationSK
using the single thread regeneration. The reason being that if the density is
constant, also the standard deviation over the length of a path that traverses the
medium will be small. Thus, the rays are starting and stopping by themselves
all together and there is no need for extra care on synchronizing the threads or
compacting them. The other conclusion that is possible to take is that the GPU
is performing much better than the CPU algorithm also considering the naive
single kernel approach.

Table 6.1: comparison with Mitsuba renderer. This table shows the comparison
of the algorithm showed in the thesis with a CPU volumetric path tracing imple-
mentation provided by Jakob [2010]. The table shows that the CPU algorithm is
performing worse in all the case. The two measures provided are the millions of
rays traced every second and the total time for rendering a 400x400 image with
the scene

method rays/sec
cgg-logo ad

naiveSK 3.88 2.13
regenerationSK (thread) 81.62 42.37
regenerationSK (warp) 4.37 7.02

streamingSK (compaction) 52.69 37.81
streamingSK (sorting) 20.41 17.61

sortingSK 20.90 17.83
mitsuba (volpath simple) 0.003 17.83

Let’s consider now a scene with varying density but not varying albedo, like
the one in figure 6.1. The results relative to this scene are presented in the table

46

Figure 6.1: smoke scene: heterogeneous volume representing smoke. The file
which have grid resolution of (128,128,50) can be found in the website of the
Mitsuba renderer Jakob [2010]. The density scale used in this scene is 800.

6.2. The table shows the millions of rays per second and the total time to render
the smoke scene with density scale factor 800 which corresponds to the scaling
factor of the 0 to 1 density volume. The results are showing that in this case the
algorithm that is performing better is the streamingSK. The explanation can be
found in the long duration of some rays inside the medium compared to other
rays that are ending immediately. In this case, the streaming method is able to
group together the long term rays and decrease the divergence of the warps. This
results in a better efficiency of the streaming algorithm when the scenes present
high varying density. However, the complexity of the density function is not the
only factor to take in consideration.

Table 6.2: comparison with Mitsuba renderer on the smoke scene. This table
shows the behavior of the algorithms showed in this work in the case the scene
present high varying density and high resolution.

method rays/sec time (sec)
regenerationSK (thread) 2.52 131
regenerationSK (warp) 7.35 127

streamingSK (compaction) 17.41 53.68
sortingSK 14.64 63.83

mitsuba (volpath simple) 0.58 1076
mitsuba (volpath) 0.54 1195

The scene in figure 6.2 presents an high varying density but a small texture
resolution. In this case the methods that are using compaction are performing
worse than the RegenerationSk method with a single thread regeneration as it is
showed in the table 6.3. A possible reason for this behavior can be attributed to
the ratio between traced paths and grid resolution. That is, in this type of scenes
if the number of rays is high enough it is more probable that groups of rays access

47

Figure 6.2: bucky heterogeneous volume with grid resolution of (32,32,32). The
file is usually used for testing volumetric rendering because it presents an high
varying density. In this test the density values are varying between 0 and 40. For
the color a static transfer function is applied which maps green to low density
values, red to medium density values and blue to high density values. The number
of iterations used for the Monte Carlo estimation is 300.

the same texture data. That happen because the texture resolution is much lower
respect to the previous cases. If threads that are close together access the same
texture values they are behaving similarly to the case of constant density factor
and exactly like in that case a simple method, like the regenerationSK, that fully
utilize the GPU gives the best performance gain.

Table 6.3: comparison of the GPU rendering algorithms detailed in the chapter
4 on a high varying density scene in figure 6.2 with many density holes and small
resolution

method rays/sec time (sec)
regenerationSK (thread) 10.96 39.71

streamingSK (compaction) 5.75 52.83
sortingSK 5.69 53.30
naiveSK 4.99 60.86

6.2 Which is the Best?
Looking at the results that we have showed, we can say that the best algorithm to
use for GPU volumetric path tracing closely depends on the type of scene we want
to render. We have seen that for complex scenes with high varying density and
high resolution texture the more sophisticated algorithm which uses compaction
and smart regeneration are performing better. On the other hand, if our scene
is a simple scene, simple methods which requires less synchronization between
threads and less branch divergence are getting better results.

48

Conclusion
In this work we have implemented and analyzed different methods to optimize a
volumetric path tracer. We have seen that, especially on GPU, the type of path
tracing algorithm that performs best is tightly coupled with the type of scene we
want to render. If the scene is simple, methods that are simple are performing
better. If the scene is complex, it is better to use a different strategy and concen-
trate on utilization and data locality. We have proposed new variants of existing
path regeneration algorithms based on different synchronization levels. Moreover,
we have implemented a new sorting strategy which builds upon the idea of main-
taining the ray coherence of the path tracer not only for the primary generated
paths but also during scattering. This new method is performing as good as the
best streaming algorithm but we believe that, using bigger and different datasets,
it can lead to further improvements in time performance.

Future Work
There are many possible future directions to take based on the results showed
in this work. The first step is the use of out-of-core textures and CUDA man-
aged memory. Indeed, our work is currently limited by the available memory in
the GPU. We have implemented a zero copy texture which however is poor in
performance compared to the normal version. The usage of more memory for
testing will permit to test bigger scenes where we believe the sorting algorithms
can perform better. Moreover, the implementation can be generalized to handle
any type of scenes and geometry using the state of the art intersection framework
provided by Aila and Laine [2009]. After that the algorithms should be tested
on different type of hardware which can lead to more details about the different
use of the cache between different GPU architectures. Finally, CUDA is not the
only language which permits GPGPU computing and for this reason the imple-
mentation should be ported and tested also with other GPGPU programming
languages like OpenCL.

49

Bibliography
Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on

gpus. In Proceedings of the Conference on High Performance Graphics 2009,
HPG ’09, pages 145–149, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
603-8. doi: 10.1145/1572769.1572792. URL http://doi.acm.org/10.1145/
1572769.1572792.

Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, and Philipp Slusallek. Pro-
gressive light transport simulation on the gpu: Survey and improvements.
ACM Trans. Graph., 33(3):29:1–29:19, June 2014. ISSN 0730-0301. doi:
10.1145/2602144. URL http://doi.acm.org/10.1145/2602144.

Eugene d’Eon. A Hitchhiker’s Guide to Multiple Scattering. 2016.

Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd
Bickel, Alexander Wilkie, and Jaroslav Křivánek. Scattering-aware texture
reproduction for 3d printing. ACM Trans. Graph., 36(6):241:1–241:15, Novem-
ber 2017. ISSN 0730-0301. doi: 10.1145/3130800.3130890. URL http:
//doi.acm.org/10.1145/3130800.3130890.

V. A. Frolov and V. A. Galaktionov. Low overhead path regeneration. Pro-
gramming and Computer Software, 42(6):382–387, Nov 2016. ISSN 1608-
3261. doi: 10.1134/S0361768816060025. URL https://doi.org/10.1134/
S0361768816060025.

K. Gupta, J. A. Stuart, and J. D. Owens. A study of persistent threads style
gpu programming for gpgpu workloads. In 2012 Innovative Parallel Computing
(InPar), pages 1–14, May 2012. doi: 10.1109/InPar.2012.6339596.

Eric Heitz. A Simpler and Exact Sampling Routine for the GGX Distribution
of Visible Normals. Research report, Unity Technologies, April 2017. URL
https://hal.archives-ouvertes.fr/hal-01509746.

Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.

Wojciech Jarosz. Efficient Monte Carlo Methods for Light Transport in Scattering
Media. PhD thesis, UC San Diego, September 2008.

James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20
(4):143–150, August 1986. ISSN 0097-8930. doi: 10.1145/15886.15902. URL
http://doi.acm.org/10.1145/15886.15902.

Samuli Laine, Tero Karras, and Timo Aila. Megakernels considered harmful:
Wavefront path tracing on gpus. In Proceedings of the 5th High-Performance
Graphics Conference, HPG ’13, pages 137–143, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2135-8. doi: 10.1145/2492045.2492060. URL http:
//doi.acm.org/10.1145/2492045.2492060.

Daniel Seibert Matthias Raab and Alexander Keller. Unbiased global illumination
with participating media.

50

http://doi.acm.org/10.1145/1572769.1572792
http://doi.acm.org/10.1145/1572769.1572792
http://doi.acm.org/10.1145/2602144
http://doi.acm.org/10.1145/3130800.3130890
http://doi.acm.org/10.1145/3130800.3130890
https://doi.org/10.1134/S0361768816060025
https://doi.org/10.1134/S0361768816060025
https://hal.archives-ouvertes.fr/hal-01509746
http://doi.acm.org/10.1145/15886.15902
http://doi.acm.org/10.1145/2492045.2492060
http://doi.acm.org/10.1145/2492045.2492060

Michael McCool, James Reinders, and Arch Robison. Structured Parallel Pro-
gramming: Patterns for Efficient Computation. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1st edition, 2012. ISBN 9780123914439,
9780124159938.

Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio, Hye-Sun Kim,
Yun-Ji Ban, Seung Woo Nam, and Sung-Eui Yoon. Cache-oblivious ray
reordering. ACM Transactions on Graphics, 29(3):1–10, jun 2010. doi:
10.1145/1805964.1805972.

Jan Novák, Vlastimil Havran, and Carsten Daschbacher. Path regeneration for
interactive path tracing. pages 61–64. Eurographics Association, 2010.

Nvidia. cuda-c-programming-guide, 2017. URL http://docs.nvidia.com/
cuda/cuda-c-programming-guide.

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hobe-
rock, David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin
Robison, and Martin Stich. Optix: A general purpose ray tracing engine. ACM
Trans. Graph., 29(4):66:1–66:13, July 2010. ISSN 0730-0301. doi: 10.1145/
1778765.1778803. URL http://doi.acm.org/10.1145/1778765.1778803.

Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004. ISBN 012553180X.

Dietger van Antwerpen. Improving simd efficiency for parallel monte carlo light
transport on the gpu. In Proceedings of the ACM SIGGRAPH Symposium
on High Performance Graphics, HPG ’11, pages 41–50, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0896-0. doi: 10.1145/2018323.2018330. URL
http://doi.acm.org/10.1145/2018323.2018330.

H.C. van de Hulst. Light scattering by small particles. Dover Publications Inc.,
New York, USA, 1981.

Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD
thesis, Stanford University, 1997.

Vasily Volkov. Better performance at lower occupancy. 10, 01 2015. URL http:
//www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf.

Ingo Wald. Active thread compaction for gpu path tracing. In Proceedings
of the ACM SIGGRAPH Symposium on High Performance Graphics, HPG
’11, pages 51–58, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0896-0. doi: 10.1145/2018323.2018331. URL http://doi.acm.org/10.1145/
2018323.2018331.

Murphy T. Hemmings P. Woodcock, E. and L. T.C. Techniques used in the gem
code for monte carlo neutronics calculations in reactors and other systems of
complex geometry. 1965.

51

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://doi.acm.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/2018323.2018330
http://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
http://doi.acm.org/10.1145/2018323.2018331
http://doi.acm.org/10.1145/2018323.2018331

List of Figures

3.1 CPU and GPU, heterogeneous programming 19
3.2 Memory and Thread Hierarchy. All threads can also directly access

the read-only memory using the constant and texture memory.
The concrete Memory hierarchy showed is relative to the Kepler
Architecture (compute capability 3.0) 20

3.3 Kepler Architecture (compute capability 3) 22
3.4 Streaming Multiprocessor (Kepler architecture compute capability

3) . 23

4.1 Design decision tree. This tree represent the design decisions made
to optimize a GPU path tracer. In the first level, the first decision
is regarding the use of a single or a multi kernel and more in general,
giving more control to the device or to the host. The second level
contains all the possibility presented to optimize the utilization of
the GPU. Finally, the last level contains the possibility to decrease
data access latencies in a volumetric path tracer. 25

4.2 Test scenes. top: scenes for 3D printing application, bottom:
scenes for data visualization. 26

4.3 steps for compacting a group of threads. In the top active threads
are colored in orange and associated with the label 1 inside a row of
blocks representing a linear memory of threads. In the second row
of threads from the top, an exclusive sum operation is performed
on the active labels. In the third row the computed sums are
used for identifying the closest empty thread in the memory. The
atomic counter is incremented with the last sum computed and the
threads which reside after the position indicated by this counter
are regenerated . 34

4.4 Block Compaction. This figure shows how the active threads are
compacted using the StreamingSK algorithm. The memory con-
taining the threads is divided in blocks and only inside each block
the compaction is performed. 36

4.5 Z-Order. from the left to the right we have: 3D z-curve with
resolution 2X2X2, 3D z-curve with resolution 4X4X4, 3D z-curve
with resolution 8X8X8. It is important to notice how the 3D points
are mapped into a linear curve so that points that are near in the
3D space are near also in the curve (the image is taken from the
website http://asgerhoedt.dk) . 37

4.6 Morton code generation: this chart explain the algorithm used to
calculate the Morton code (z-value). First the fractional part of
the coordinates is taken. Then those coordinates are expanded
using 0 values. Finally the coordinates are combined together to
create the final code. 37

52

4.7 z-reordering of the data. In this image is explained the reordering
methods used in this work. At the top the points inside the volume
(orange blocks inside the cube) that correspond to a thread in
the global memory (represented by a row of blocks) are placed
independently on their position inside the volume. In the bottom
the threads corresponding to the points in the volume are reordered
based on the z-value of those points and compacted. 39

5.1 kernel launch software architecture. The figure shows the method
used to create generic implementation of the volumetric path trac-
ing without affecting the performance. Concretely, different imple-
mentation are compiled for each different variant of the algorithm.
The template interfaces permits to do that without affecting re-
usability of the code. 42

5.2 Configuration Architecture. In this image is shown the system used
to permit the loading of different scene formats inside the software.
Moreover, the SceneBuilder interface provide an extension point for
the loading of even more formats. 43

5.3 Interactive Renderer Architecture. The interactive renderer has
been created without compromising the generality of the algo-
rithm. The algorithm created can be used inside a BufferProces-
sorDelegate which is providing the data necessary to the GLView-
Controller for rendering the image frame by frame. 45

6.1 smoke scene: heterogeneous volume representing smoke. The file
which have grid resolution of (128,128,50) can be found in the
website of the Mitsuba renderer Jakob [2010]. The density scale
used in this scene is 800. 47

6.2 bucky heterogeneous volume with grid resolution of (32,32,32).
The file is usually used for testing volumetric rendering because
it presents an high varying density. In this test the density val-
ues are varying between 0 and 40. For the color a static transfer
function is applied which maps green to low density values, red
to medium density values and blue to high density values. The
number of iterations used for the Monte Carlo estimation is 300. . 48

53

List of Tables

4.1 Single Kernel versus Multi Kernel (naive). The speed of the meth-
ods is analyzed in terms of millions of traced rays per second
(rays/sec). The test has been done using the scene in figure 4.2b
rendering a 400x400 image for 100 iterations (number of samples
for the Monte Carlo estimation) 27

4.2 Different image tiling settings used for rendering a 1920x1920 im-
age with the scene in figure 4.2b. In the table the number of paths
processed per tile is compared to the time to render the all im-
age. Note that, opposed to the naiveSK, the streamingSK kernel
launching configuration does not depend on the number of paths
processed but rather on the threads available on the GPU. For this
reason when the number of paths processed becomes low the naive
method improve its performance while the streamingSK decrease
in performance. 28

4.3 comparison of different types of regeneration on the scenes pre-
sented in figure 4.2. Three regeneration approach are taken in
consideration: regenerationSK (thread) doesn’t require any type
of synchronization and regenerate a thread immediately after it
becomes idle. regenerationSK (warp) require all the warp to be
idle before regenerating. regenerationSK (block) is synchronizing
all the block and regenerating only when all the block is idle. Fi-
nally, the naiveSK approach is a simple volumetric path tracer
which is not performing any regeneration. 31

4.4 maximize occupancy decreasing registers usage. In those results
the number of register used by the kernels is bounded so that
the device can achieve maximum occupancy. However, comparing
those results with the ones in table 4.6 is possible to see that this
method is actually performing much worse than the previous one
with only 50% of occupancy . 32

4.5 comparison of different types of compaction. The streamingSK
method is compacting all the active threads that are in the same
block, whereas the streamingMK is compacting all the active threads
in all the device. Those two new methods are compared with the
regeneration methods which are not using compaction 36

4.6 sorting comparison: in this table two different sorting methodolo-
gies are adopted. the first one, streamingSK (sorting) is behaving
exactly like the streamingSK with the only difference that the sort-
ing with the z-order based on the ray position is used instead of
the compaction. The second one, sortingSK, have the only differ-
ence of postponing the texture access after the reordering like in
algorithm 6. It is clear from the table that the sorting methods
are not performing better than the other ones on those scenes. . . 40

54

6.1 comparison with Mitsuba renderer. This table shows the compar-
ison of the algorithm showed in the thesis with a CPU volumetric
path tracing implementation provided by Jakob [2010]. The table
shows that the CPU algorithm is performing worse in all the case.
The two measures provided are the millions of rays traced every
second and the total time for rendering a 400x400 image with the
scene . 46

6.2 comparison with Mitsuba renderer on the smoke scene. This table
shows the behavior of the algorithms showed in this work in the
case the scene present high varying density and high resolution. . 47

6.3 comparison of the GPU rendering algorithms detailed in the chap-
ter 4 on a high varying density scene in figure 6.2 with many density
holes and small resolution . 48

55

List of Abbreviations
Bsdf Bidirectional Scattering Distribution Function
CUDA Compute Unified Device Architecture
GPU Graphical Processing Unit
σt extinction coefficient
σs scattering coefficient
σa absorption coefficient
α albedo
VRE Volumetric Rendering Equation

56

Attachments

Digital content
implementation/src : source code of the project.

implementation/external : external libraries used inside the project.

implementation/executable : executable of the software for rendering a volume.

implementation/data : example data which can be used by the renderer

implementation/VisualStudio2015 Cuda9.0 : contains the Visual Studio project
for compiling the code. It requires Cuda9.0 to be installed.

Thesis : pdf of the thesis

scripts : scripts which permits easily to run the rendering on the different data
sets.

Minimum System Requirements
To run the program is important to have a CUDA enabled GPU.

57

Detailed Hardware Specification
The hardware that we will use for testing is a MacBook Pro with CPU Intel Core
i7 quad-core

• 2,3GHz (Turbo Boost until 3,3GHz).

• cache L3 : 6 MB.

• cache L2 per core: 256 KB.

• cache L1 per core: 32 KB.

• ram : 8 GB DDR3 1600 MHz.

and GPU Nvidia GeForce 650M with the following characteristics:

• CUDA Capability Major/Minor version number: 3.0

• Total amount of global memory: 512 MBytes (536870912 bytes)

• (2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores

• GPU Max Clock rate: 405 MHz (0.41 GHz)

• Memory Clock rate: 2000 Mhz

• Memory Bus Width: 128-bit

• L2 Cache Size: 262144 bytes (number of registers * 4)

• L1 Cache Size: 64 bytes (divided between shared memory and cache)

• Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536),
3D=(4096, 4096, 4096)

• Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

• Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048
layers

• Total amount of constant memory: 65536 bytes

• Total amount of shared memory per block: 49152 bytes

• Total number of registers available per block: 65536 (equal to registers per
SM)

• Warp size: 32

• Maximum number of threads per multiprocessor: 2048

• Maximum number of threads per block: 1024

• Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

• Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

58

• Maximum memory pitch: 2147483647 bytes

• Texture alignment: 512 bytes

• Concurrent copy and kernel execution: Yes with 1 copy engine(s)

• Run time limit on kernels: Yes

• Integrated GPU sharing Host Memory: No

• Support host page-locked memory mapping: Yes

• Alignment requirement for Surfaces: Yes

• Device has ECC (error correction code) support: Disabled

• CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display
Driver Model)

• Device supports Unified Addressing (UVA): Yes

• Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0

59

	Introduction
	Problem Statement
	Radiative Transport Problem
	Participating Media
	The Volume Rendering Equation (VRE)
	Porting to GPU
	Limitations

	Related Work
	Solving the Volumetric Rendering Equation
	Path Tracing (PT)
	Bidirectional Path Tracing (BPT)
	Metropolis Light Transport (MLT)

	Efficient Implementations of Path Tracing on GPU

	Background
	Volumetric Path Tracing
	GPU Architecture

	Optimization Methodology
	Host Control or Device Control
	Single Kernel versus Multi Kernel
	Image Tiling
	Summary

	Maximizing Utilization and Hiding Multiprocessor Latency
	Persistent Thread
	Occupancy
	Summary

	Data Locality and Code Divergence
	Compaction
	Reordering
	Summary

	Implementation Details
	Generic Programming
	Scene Assembler
	Interactive Renderer and Transfer Delegation
	Zero-Copy Volume

	Discussion
	Results
	Which is the Best?

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments

